Native Fish Society
2015 Upper Eel River Temperature Monitoring Report

Report prepared by Jake Crawford, Southern District Manager, Native Fish Society
Fieldwork conducted by Mark Sherwood, Communications Director, Native Fish Society

June 2016
Executive Summary

In the summer of 2015, Native Fish Society staff, River Stewards and volunteers placed fourteen digital temperature monitors in the upper mainstem of California’s Eel River and its tributaries above Scott Dam/Lake Pillsbury. Our goal is to contribute a greater scientific understanding about the area’s potential to serve the temperature-driven life history requirements of native fish in the upper Eel watershed including salmon, steelhead and trout.

Our project will collect multi-year water temperature data to learn whether the headwater tributaries of the Eel River flowing into the mainstem Eel River above Scott Dam would remain at temperatures suitable for salmonids during warm summer months, if in the future wild salmon and steelhead were to gain access to currently inaccessible but previously occupied headwater tributaries. While temperature monitoring has been conducted throughout the watershed by California Department of Fish and Wildlife, Pacific Gas and Electric (PG&E), University of California and other public, private and community groups, no extensive multiyear monitoring has been done of the tributaries above Scott Dam to date.

The Eel River has historically and is currently heavily impacted by anthropogenic and environmental changes, including agriculture, forestry, dams, irrigation diversions, road building and historic catastrophic flooding. It is unknown to what degree these changes have impacted the normal temperature thresholds in the river, but current observations have identified that each year some parts of the Eel River watershed often exceed temperatures suitable for salmonids (20°C/68°F). Past observations of the Eel River temperature regime have noted, “Over half of the mainstem and major tributary channels can be considered thermally lethal during some portion of the summer. This was probably true before significant human impact, yet huge salmon populations flourished” (Trush, 1992). As such, any cold, clean source of water accessible, or potentially accessible, to salmonids could be of great benefit to the recovery of threatened populations and may be critical to their long-term survival as they search for cold water refugia given climate change projections over the next fifty to eighty years.

Analysis of our first year of temperature monitoring data conducted from June – October 2015 shows there is significant potential for upper Eel River tributaries to provide important cold water sources offering both suitable and even optimal temperatures for the life history requirements of salmonids during warm summer months, while the mainstem Eel River hovers at temperatures considered lethal for salmonids. According to the National Oceanic and Atmospheric Administration (NOAA), 2015 was one of the warmest years on record and the Eel River experienced one of the driest winters on record. Our first year of temperature monitoring data provides an important accounting of the cold-water suitability above Scott Dam, and can provide insight for current management decisions to help support self-sustaining wild salmonid populations in the future. In 2015, eight of the fourteen creeks monitored never went above temperatures considered suitable for salmonids (<20°C) and those that did, peaked briefly, and not by more than a few degrees Celsius, while five of the creeks met or remained below optimal levels (<18°C) the entire summer (EPA, 2001; temperature thresholds discussed further below).

Our 2015 results demonstrate there are cold-water sources suitable for salmonids above Scott Dam, and that the upper mainstem Eel is uniquely well suited to provide a buffer against dry and hot years, such as 2015. The following report describes our methods, sampling sites, results and discussion for our first year of data collection. We greatly appreciate the opportunity to share this information to help inform future decisions about the upper Eel River.
About Native Fish Society

Founded in 1995, the Native Fish Society utilizes the best-available science and our grassroots network of River Stewards to conserve and restore the Northwest’s wild, native fish and safeguard their freshwater habitats. The Native Fish Society has 3,000 members and supports 85 volunteer River Stewards in Oregon, Washington, Western Idaho and Northern California.

Acknowledgements

The ongoing temperature-monitoring project would not be possible without the efforts of many organizations and individuals. Among them are: California Department of Fish and Wildlife, which has provided oversight and information about site locations; the California State Water Resources Control Board, which provided temperature monitors and invaluable assistance and input; River Steward Samantha Kannry who helped coordinate volunteers and identify site locations; and the numerous volunteers and partners working on behalf of the Eel River and its wild, native fish. In particular, we would like to thank River Steward Dustin Revel, River Steward Dane Downing, Bruce Hilbach-Barger, Jason Hartwick, Rose Dana, Shaun Thompson, Pat Higgins and the Eel River Recovery Project, Mary Lou Mileck, Bob Lashinski and Joe Fergusson for their time, effort and guidance in conducting this project.
Table of Contents

I. Introduction 5
 a. Size and Location 5
 b. Wild, Native Fish 5
 c. Scott Dam and Lake Pillsbury 6
II. Water Temperature and Salmonids 6
III. Methods 7
IV. Temperature Monitor Locations 8

Figure 1. Map of Temperature Monitor Locations
1. Anderson Creek 10
2. Bear Creek 11
3. Berry Creek 12
4. Blue Slides Creek 13
5. Cold Creek 14
6. Copper Butte Creek 15
7. Corbin Creek 16
8. Hummingbird Creek 17
9. Rattlesnake Creek 18
10. Rice Creek 19
11. Skeleton Creek 20
12. Thistle Glade Creek 21
13. Upper Eel, Downstream Bloody Rock Roughs 22
14. Deer Creek 23

V. Results 24
VI. Summary 25
VII. Discussion 25
Literature Cited 27
I. Introduction to the Eel River

The Eel River is a remarkable, diverse and expansive watershed. Numerous accounts of the Eel River have been written in environmental reports, scientific studies, and other literature that provide both historic and current characterizations of the river (see Kubicek, 1977; VTN Oregon, 1982; United States Forest Service and Bureau of Land Management, 1995; Becker & Reining, 2009; Yoshiyama & Moyle, 2010; National Marine Fisheries Service, 2014; Asarian, 2015; National Marine Fisheries Service, 2015). This report is limited to the rationale, methods, documentation and discussion of our 2015 temperature monitoring effort, which identified and reported on cold-water sources in the upper mainstem Eel River and it’s tributaries above Scott Dam and Lake Pillsbury.

a. Size and Location

California’s Eel River is the third largest watershed in the state and encompasses a drainage of nearly 3,700 square miles of diverse and rugged terrain (Yoshiyama & Moyle, 2010). Four out of the five major forks of the Eel River’s headwaters start out of the west side of the California Coast Range from wilderness areas in the Mendocino National Forest with elevations of 6,000 - 8,000 feet. Flowing northwest through three counties (Lake, Mendocino, and Glen), the Eel River eventually empties into the Pacific Ocean thirteen miles south of Eureka, California. Due to its Mediterranean like climate, almost all precipitation falls as rain or snow (at elevations above 5,000 feet) in the winter, and virtually no rain falls in the summer, which results in periods of low flow and warm water temperatures occurring from June to October (Yoshiyama & Moyle, 2010; Asarian, 2015).

b. Wild, Native Fish

Historically, the Eel River contained the third largest run of salmonids in California, behind the Sacramento and Klamath Rivers, collectively totaling over a million fish returning annually (Yoshiyama & Moyle, 2010). The Eel River is home to fall-run California Coast Chinook salmon (*Oncorhynchus tshawytscha*), Southern Oregon Northern California coho salmon (*O. kisutch*), winter-run and summer-run North California Coast steelhead (*O. mykiss*), resident rainbow trout (*O. mykiss*), anadromous coastal cutthroat trout (*O. clarkii*), Pacific Lamprey (*Entosphenus tridentatus*) and Green sturgeon (*Acipenser medirostris*). Of these populations, Chinook salmon, coho salmon and steelhead have all seen dramatic declines in historic populations and are currently listed as threatened under the federal Endangered Species Act (Yoshiyama & Moyle, 2010).

Populations of wild, native fish in the Eel River have declined as a result of both anthropogenic and biological changes that have occurred over the last century (NMFS, 2005; Yoshiyama & Moyle, 2010). These impacts include over-harvest by commercial fisheries, habitat degradation from road building and agriculture, catastrophic flooding, legal and illegal water diversions, competition and predation from piscivorous non-native species, and loss of access to historically available suitable habitat upstream of Lake Pillsbury, created by Scott Dam in 1922 (Yoshiyama & Moyle, 2010; NMFS, 2014).

Threatened populations in the upper mainstem Eel River include distinct population segments of North California Coast Steelhead with summer-run and winter-run life history components, and fall-run California Coast Chinook salmon (NMFS, 2011). The upper Mainstem
Eel River steelhead population consists of the watershed area beginning at the confluence of Soda Creek (1.3 miles below Scott Dam) and encompasses the area above Scott Dam/Lake Pillsbury and its associated tributaries (NMFS, 2015). The Upper Eel River Chinook salmon population includes all fish spawning upstream of the South Fork Eel River confluence, and all major tributaries including the Middle Fork Eel River (NMFS, 2011). Historical reviews analyzing trends in population status of upper Eel River Chinook salmon and steelhead are varied in exact numbers; however, in general, with precautions in data interpretation, NFMS has identified that current population abundance is trending downward and are considered very low compared to historical estimates (NMFS, 2011).

c. Scott Dam and Lake Pillsbury

Situated in the upper reach of the Eel River Basin, Scott Dam and Cape Horn Dam represent the most significant dams in the Eel watershed and are part of the system that creates the Potter Valley Project (NMFS, 2014). Constructed in the early 20th century, Cape Horn Dam forms the 700 acre-foot storage reservoir Van Arsdale, and is located 11 miles below Scott Dam, which forms the 75,000 acre-foot storage reservoir Lake Pillsbury (NMFS, 2014). In total, the Potter Valley Project consists of the two dams and reservoirs, a tunnel and a powerhouse that provide the neighboring Russian River with water for irrigation and up to 9.4 megawatts of hydroelectric power to the nearby city of Ukiah (Potter Valley Water Irrigation District, 2016).

The Potter Valley Project dams have blocked historic spawning and rearing habitat upstream of Scott Dam, and have been identified as some of the most significant negative effects on salmon and steelhead for Upper Mainstem anadromous salmonid populations in the Eel River (NMFS, 2014; NMFS, 2015). Migrating fish are capable of reaching the habitat above the lower Cape Horn Dam, however access was anthropogenically limited until renovations to the fish ladder were made in 1987 (Yoshiyama & Moyle, 2010). Combined with more recent amendments to stream flow management required by the Federal Energy Regulatory Commission (FERC) in 2004 these changes have resulted in improved conditions for migrating fish between the dams (NMFS, 2014; NMFS, 2015). Scott Dam is located immediately below the confluence of the Rice Fork Eel River, Salmon Creek, and Squaw Valley Creek and was built without fish passage. Depending on the source, Scott Dam blocks from 35 miles to over 200 miles of potential spawning and rearing habitat for anadromous salmonids (VTN, 1982; USFS and BLM, 1995; NMFS 2015). Moreover, to what extent resident *O. mykiss* utilize Lake Pillsbury for an adfluvial life history strategy is unknown (NMFS, 2015).

The Upper Eel Watershed above Scott Dam is an area primarily under the management of the United States Forest Service (USFS) Mendocino National Forest and consists of roughly 290 square miles, representing around 7.3 percent of the total Eel River watershed (NMFS, 2015). Scott Dam and the Potter Valley Project will begin relicensing discussions starting in 2017, and our project goal is to help contribute a better scientific understanding of the potential cold-water sources in the Upper Eel River as part of the FERC relicensing process.

II. Water Temperature and Salmonids

Of all the factors that affect salmonid biology, temperature is probably the most important environmental influence (Brannon, 1993; USEPA, 2001). Different salmonids have evolved to adapt to different temperature regimes based on local environmental conditions, and run-timing for anadromous salmonids is critically linked to water temperature in order to
optimize survival strategies for migration, spawning, incubation, emergence and rearing (USEPA, 2001). Studies on the effects of temperature on salmonids are numerous, and have identified that water temperature can affect nearly every phase of their life histories, including their metabolisms, upstream and downstream migration, spawning, rearing, food ability, smoltification, swimming speed, result in direct and delayed mortality, cause increased disease, and alter the competitive dominance of other predators (USEPA, 2001; Carter, 2005; Kubicek, 1977; Elliot 1981). Moreover, the duration and severity of the time in which salmonids are exposed to thermal pressures can affect their long-term survival (Carter, 2005; Ligon et al., 1999).

III. Methods

In 2015, Native Fish Society staff, River Stewards, and volunteers set fourteen remote digital temperature loggers in various creeks above Scott Dam/Lake Pillsbury that we believed had the potential to discharge a substantial amount of cold water throughout the summer and exhibit thermal refugia for salmonids. These locations were based on prior fieldwork for the California Department of Fish and Wildlife (CDFW) completed by one of our volunteer River Stewards, Samantha Kannry. Our hypothesis was that if accessible to anadromous fish, these areas were likely to sustain cold flows throughout the periods of low flow and warm water temperatures typical to the Eel watershed from June - October.

We used Onset Corporation temperature probes calibrated and set according to the criteria developed by the Stream Temperature Protocol outlined by the Forest Science Project, Humboldt State University (Lewis, 1999). Loggers were obtained in cooperation with the California Water Resources Control Board, as well as purchased from Onset Corporation by Native Fish Society. Each logger was calibrated according to National Institute of Standards and Technology (NIST) criteria, and set to record one reading every 30 minutes from the date of setting, running from the end of May to the first week of June, until they were retrieved the second week of October throughout 2015. We utilized two types of Onset Hobo temperature probes, including the Hobo Tidbit V2 Temp Logger (UTBI-001) and Hobo Water Temp Pro V2 (U22-001). The Onset Tidbit UTBI-001 and Pro V2 U22 were selected because they are easy to use, measure temperatures over a wide temperature range (-40°C to 70°C), and have a ±0.2 °C accuracy (Onset, 2016). Probes were attached to postcard sized steel plates (3” x 6”) with industrial strength plastic zip ties, and submerged under water out of direct sunlight. All monitor placement coordinates were recorded in WGS84, and raw data files and pictures of site locations are available upon request.

Based on the United States Environmental Protection Agency’s “Summary of Technical Literature Examining the Physiological Effects of Temperature on Salmonids” (EPA-910-D-01-005, 2001), we’ve highlighted two lines for graphical representation of our 2015 Monitoring Data, including “Suitable for Salmonids” with temperatures <20°C, and “Optimal for Salmonids” at temperatures <18°C. We drew the 20°C notation from Friedrichsen (1998), which offers:

“The figures denote 20°C as the threshold of stress for salmonids (Bjornn and Reiser, 1991). Although some species such as coho salmon may have a lower threshold for stress (Spence et al. 1996), the 20°C value presents a simple but useful reference point. Some comparison of maximum temperature between the field seasons of 1996 and 1997 are
made with results from 1973 as measured by Kubicek (1977). These maximum weekly temperatures are not specifically relevant salmonid health in that they are momentary high points, however, they are useful for general discussion.”

In summary, we recognize that these temperature thresholds vary between species, life history stages, and duration of exposure and should be used solely as visual references.

IV. Temperature Monitor Locations

We sought to collect data that would help determine if the tributaries above Scott Dam could provide suitable year round cold-water habitat and thermal refuge for salmonids. Site locations were selected based on their potential to discharge a substantial amount of cold water throughout the summer due to their size, location, and primarily snow fed sources. Preliminary surveys from field observations and information from local state agency staff helped inform decisions for temperature monitor placements. Temperature monitors were deployed during 5/30/15 – 6/3/15, and were retrieved from 10/8/15 – 10/11/15.
Figure 1. Map of Monitoring Locations.

Temperature Monitors:
- 390 - Anderson Creek
- 389 - Bear Creek
- 393 - Berry Creek
- 391 - Blue Slides Creek
- 388 - Cold Creek
- 396 - Copper Butte Creek
- 387 - Corbin Creek
- 385 - Deer Creek
- 382 - Hummingbird Creek
- 384 - Rattlesnake Creek
- 381 - Rice Creek
- 394 - Skeleton Creek
- 399 - Thistle Glade Creek
- 383 - Upper Eel, Bloody Rock Roughs
1. **Anderson Creek**

![Temperature Graph]

Details

- **Monitor Type:** Hobo Tidbit V2 Temp Logger (UTBI-001)
- **Location:** 39.50863 N, 122.84512 W
- **Placed:** 6/1/15 at 2:45PM
- **Retrieved:** 10/9/15 at 4:40PM
- **Maximum Recorded Temperature:** 20.82°C on 7/16/15
- **Minimum Recorded Temperature:** 11.22°C on 10/3/15

Notes

Anderson Creek starts at 5,400' on the north side of 6,500' Sheetiron Mountain and is a shorter tributary than Corbin Creek. Rainbow trout (*O. Mykiss*) were sighted in Anderson Creek.
2. Bear Creek

Details

- Monitor Type: Hobo Tidbit V2 Temp Logger (UTBI-001)
- Location: 39.32793, N 122.82825 W
- Placed: 6/2/15 at 1:00PM
- Retrieved: 10/8/15 at 10:00AM
- Maximum Recorded Temperature: 21.58°C on 7/4/15
- Minimum Recorded Temperature: 10.83°C on 9/16/15

Notes

Bear Creek is the largest Rice Fork Eel River tributary that we monitored. We saw many *O. Mykiss*. The creek stayed cold and had plenty of water. The headwaters of Bear Creek are in the Snow Mountain Wilderness at nearly 6,500' on Snow Mountain.
3. Berry Creek

Details

- Monitor Type: Hobo Water Temp Pro V2 (U22-001)
- Location: 39.42103, N 122.85258 W
- Placed: 6/3/15 at 10:00AM
- Retrieved: 10/8/15 at 6:00PM
- Maximum Recorded Temperature: 15.06°C on 7/31/15
- Minimum Recorded Temperature: 11.49°C on 6/4/15

Notes

Berry Creek is a short tributary to the upper mainstem Eel River originating in the Snow Mountain Wilderness at 3,400’. The road M3 is certainly a barrier to fish, it is unknown if there are other barriers located lower in Berry Creek. In future studies, we hope to approach Berry Creek from the Eel River to monitor whether the creek creates a thermal refugia at the mouth and the uppermost extent of salmon and steelhead access in this tributary.
4. **Blue Slides Creek**

![Temperature Graph of Blue Slides Creek](image)

Details

- Monitor Type: Hobo Tidbit V2 Temp Logger (UTBI-001)
- Location: 39.31794 N, 122.83981 W
- Placed: 6/2/15 at 11:10AM
- Retrieved: 10/9/15 at 1:40PM
- Maximum Recorded Temperature: 17.63°C on 6/7/15
- Minimum Recorded Temperature: 5.10°C on 9/6/15

Notes

Blue Slides Creek is a tributary to Bear Creek, which flows into the Rice Fork Eel River. Its headwaters are at 4,000’ and flows in part out of Blue Slides Lake. Blue Slides Creek was the only creek that was significantly drier when we returned in the fall. Given the fluctuations in temperature from 8/26/15 through 9/16/15 it is possible the monitor was exposed to air but upon retrieval the monitor was still wet and the pool it was in measured at 10°C from a digital hand thermometer on 10/9/15. Rainbow trout (*O. Mykiss*) were sighted in Blue Slides Creek.
5. Cold Creek

Details

- Monitor Type: Hobo Tidbit V2 Temp Logger (UTBI-001)
- Location: 39.47183 N, 122.83287 W
- Placed: 6/1/15 at 5:30PM
- Retrieved: 10/9/15 at 1:40PM
- Maximum Recorded Temperature: 18.89°C on 7/5/15
- Minimum Recorded Temperature: 11.34°C on 10/3/15

Notes

Cold Creek is another significant tributary that flows off of Sheetiron Mountain beginning at 5,000' and enters the Eel River from the east. *O. Mykiss* sighted. Cold Creek measured at 13°C from a digital hand thermometer when we deployed on 6/1/15.
6. Copper Butte Creek

Details

- Monitor Type: Hobo Water Temp Pro V2 (U22-001)
- Location: 39.42914 N 122.84573 W
- Placed: 6/3/15 at 9:30AM
- Retrieved: 10/8/15 at 5:15PM
- Maximum Recorded Temperature: 16.27°C on 7/4/15
- Minimum Recorded Temperature: 11.88°C on 9/17/15

Notes

Copper Butte Creek begins at 5,000' in the Snow Mountain Wilderness. The road M3 is a barrier to upstream migration of fish in the creek. *O. Mykiss* were observed in the pool directly downstream from the culvert, which directs the creek under the road.
7. Corbin Creek

Details

- Monitor Type: Hobo Water Temp Pro V2 (U22-001)
- Location: 39.52950 N, 122.84721 W
- Placed: 6/1/2015 at 1:30PM
- Retrieved: 10/9/2015 at 6:00PM
- Maximum Recorded Temperature: 22.51°C on 6/13/15
- Minimum Recorded Temperature: 10.69°C on 10/3/15

Notes

Corbin Creek is a significant tributary to the upper mainstem Eel River. It begins at nearly 5,400' elevation on Felkner Hill and joins the North Fork Corbin Creek and Wescott Creek on its way to the Eel River. Both the North Fork and Wescott creeks are significant waterways in their own right and each begins at over 5,000' with Wescott near 6,000' on Summit Springs Hill. Rainbow trout (O. Mykiss) were sighted in Corbin Creek.
8. Hummingbird Creek

Hummingbird Creek is a short tributary to the upper mainstem Eel River. It originates at 4,500' in the Snow Mountain Wilderness. The creek is very steep and road M3 is certainly a barrier to fish, it is unknown if there are other barriers lower in Hummingbird Creek. We hope to approach Hummingbird Creek from the Eel River in future efforts to monitor whether the creek creates a thermal refugia and the uppermost extent of salmon and steelhead access in this tributary.

Details

- Monitor Type: Hobo Water Temp Pro V2 (U22-001)
- Location: 39.40374 N 122.86013 W
- Placed: 6/3/15 at 10:30AM
- Retrieved: 10/8/15 at 5:55PM
- Maximum Recorded Temperature: 17.44°C on 7/4/15
- Minimum Recorded Temperature: 11.49°C on 6/4/15

Notes

Hummingbird Creek is a short tributary to the upper mainstem Eel River. It originates at 4,500' in the Snow Mountain Wilderness. The creek is very steep and road M3 is certainly a barrier to fish, it is unknown if there are other barriers lower in Hummingbird Creek. We hope to approach Hummingbird Creek from the Eel River in future efforts to monitor whether the creek creates a thermal refugia and the uppermost extent of salmon and steelhead access in this tributary.
9. **Rattlesnake Creek**

Details

- Monitor Type: Hobo Tidbit V2 Temp Logger (UTBI-001)
- Location: 39.49332 N, 122.86465 W
- Placed: 6/1/15 at 4:35PM
- Retrieved: 10/9/15 at 3:45PM
- Maximum Recorded Temperature: 21.65°C on 8/22/15
- Minimum Recorded Temperature: 9.11°C on 9/5/15

Notes

Rattlesnake Creek is the first tributary we monitored that joins the upper mainstem Eel River from the west. Similar in length to Anderson Creek, Rattlesnake Creek begins on 6,800' Hull Mountain. We dropped our temperature monitor into Rattlesnake Creek on June 1st and removed on October 9th. Given the temperature fluctuations in late August to the first of September, we hypothesize the area where our temperature probe was placed was potentially exposed to air temperature and not submerged the entire duration of the recorded temperatures, or given the diurnal fluctuation in temperature may also be due to surface water or groundwater changes, or was the result of rapid snowmelt off of Hull Mountain.
10. Rice Creek

Details

- Monitor Type: Hobo Tidbit V2 Temp Logger (UTBI-001)
- Location: (39.34936, N 122.87143 W)
- Placed: 6/2/16 at 3:45PM
- Retrieved: 10/8/15 at 4:10PM
- Maximum Recorded Temperature: 23.30°C on 7/4/15
- Minimum Recorded Temperature: 10.17°C on 9/6/15

Notes

Rice Creek is a significant tributary to the Rice Fork Eel River. It originates in the Snow Mountain Wilderness at 6,000'. *O. Mykiss* were sighted both in June and in October at the M3 road crossing. This road crossing is not a barrier to fish wishing to migrate upstream.
11. Skeleton Creek

Details

- Monitor Type: Hobo Water Temp Pro V2 (U22-001)
- Location: 39.43758 N, 122.83488 W
- Placed: 6/3/15 at 9:00AM
- Retrieved: 10/8/15 at 5:00PM
- Maximum Recorded Temperature: 19.25°C on 7/4/15
- Minimum Recorded Temperature: 9.63°C on 9/5/15

Notes

Skeleton Creek is likely the most significant of the five Snow Mountain Wilderness originating tributaries to the upper mainstem Eel River in terms of size and flow. The temperature probe was set in the pool just downstream of the M3 crossing. During most flows the culvert appears to be a significant barrier to upstream migrating salmonids. Rainbow trout (O. Mykiss) were sighted in Skeleton Creek.
12. Thistle Glade Creek

Thistle Glade Creek

Details

- Monitor Type: Hobo Water Temp Pro V2 (U22-001)
- Location: 39.39419, N 122.86727 W
- Placed: 6/3/15 at 9:25AM
- Retrieved: 10/8/15 at 5:40PM
- Maximum Recorded Temperature: 18.01°C on 7/4/15
- Minimum Recorded Temperature: 10.64°C on 9/6/15

Notes

Thistle Glade Creek is the lowest tributary to the upper mainstem Eel River that we monitored. It begins at 5,600' on Snow Mountain in the Snow Mountain Wilderness. The road M3 blocks upstream migration and it is likely that there is some barrier to upstream migration downstream of the monitoring site. For future studies, we hope to monitor the confluence of Thistle Glade Creek and the Eel River to determine if thermal refugia is created and how far upstream fish are able to swim.
13. Upper Eel River, Downstream of Bloody Rock Roughs

Details

- Monitor Type: Hobo Tidbit V2 Temp Logger (UTBI-001)
- Location: 39.46746 N, 122.84126 W
- Placed: 6/1/15 at 6:40PM
- Retrieved: 10/9/15 at 2:25PM
- Maximum Recorded Temperature: 29.09°C on 7/4/15
- Minimum Recorded Temperature: 13.45°C on 9/17/15

Notes

Corbin, Anderson, Rattlesnake and Cold Creek are all found upstream of the hydrological/geological maze known as the Bloody Rock Roughs. Massive boulders impossibly wedged in a narrow chasm immediately downstream of Cold Creek create these roughs. Our temperature monitor was set nearly a mile below the actual roughs and registered high mid-summer water temperatures. Many pike minnow sighted in both June and October.
14. Deer Creek

Details

- Monitor Type: Hobo Tidbit V2 Temp Logger (UTBI-001)
- Location: 39.37597 N, 122.86132 W
- Placed: 6/3/15 at 8:30AM
- Retrieved: NOT RECOVERED
- Maximum Recorded Temperature: NOT RECOVERED
- Minimum Recorded Temperature: NOT RECOVERED

Description

Deer Creek is a significant tributary to the Rice Fork Eel River, flowing out of the Snow Mountain Wilderness at over 5,000'. This is the first creek on the M3, where the road crossing creates an upstream barrier to fish.

This temperature monitor was placed on June 2 and was the only temperature monitor not recovered. We found this quite discouraging because Deer Creek was full of water both in June and in October, and *O. Mykiss* were sighted.
V. Results

In 2015, our monitors recorded Berry, Blue Slides, Copper Butte, Hummingbird, and Thistle Glade Creeks with temperatures that remained at “Optimal for Salmonids Below 18°C” throughout the entire summer. Similarly, Cold and Skeleton Creeks both stayed at or below temperatures considered “Suitable for Salmonids Below 20°C” throughout the summer. While Anderson, Bear, Corbin, Rattlesnake and Rice Creeks reached temperatures above 20°C at some point during the summer, those durations were brief and were repeatedly followed by temperatures below 18°C within the same 24 hour period. Comparatively, the temperature monitor downstream of the Bloody Rock Roughs in the mainstem Eel River recorded the warmest average temperature readings throughout the summer, and temperatures often stayed above 20°C. In addition, the Bloody Rock Roughs monitor recorded temperatures that fluctuated up to ten degrees within 24-hour periods and dropped below the “Suitable for Salmonids” within 24-hour periods on all but three occasions (July 3 - 5; August 1 - 2; August 29 - 30).

The majority of monitors recorded their maximum temperatures on 7/4/15, with seven gauges (Bloody Rock Roughs, and Bear, Copper Butte, Hummingbird, Rice, Skeleton, and Thistle Glade Creeks) all reaching their peak measured temperature on this same day.
VI. Summary

The results of our 2015 temperature monitoring efforts identified that almost all of the twelve upper Eel River tributaries we monitored above Scott Dam (not including Deer Creek and the mainstem Eel River downstream of Bloody Rock Roughs) remained at temperatures suitable for salmonids throughout the warm summer months, and that while six of the thirteen creeks monitored recorded temperatures above 20°C during June – October, 2015 those recordings were brief and closely followed by periods of diurnal cooling with temperatures below 20°C within a 24 hour period.

While the scope of our study did not measure the habitat suitability of these creeks, our findings do suggest that water temperatures would likely not be a limiting factor for salmonids if they were to regain access to potentially suitable habitat upstream of Scott Dam in these locations. The presence of Rainbow trout (*O. Mykiss*) in nine of the thirteen creeks (Copper Butte, Bear Creek, Blue Slides, Cold, Skeleton, Anderson, Rice, Corbin and Deer) we monitored further suggests the presence of suitable conditions for salmonids in these tributaries. Evaluating the merits for thermal refugia for salmonids, Copper Butte (followed closely by Skeleton) rose to the top of our list. Copper Butte never exceeded 18°C, trout were present, the creek joins the upper mainstem Eel River downstream of the Bloody Rock Roughs and it drains a significant area of the Snow Mountain Wilderness.

Future studies will need to consider whether there are any downstream barriers from our monitoring locations, the extent to which habitat is available upstream of monitor locations, whether flows remain adequate to support the different life history requirements of salmonids throughout the year, and whether additional creeks and tributaries are able to sustain suitable temperatures for salmonids in the upper Eel River watershed.

VII. Discussion

Climate change poses one of the most significant threats to salmon resiliency, and will remain a significant obstacle to recovering California’s anadromous salmonids (Bisson, 2008; Moyle et al., 2008). In California, over 60 percent of the state’s salmonids have been identified as especially vulnerable to future climate change predictions (Moyle et al., 2013). Consequently, habitats that currently support salmonids may not be suitable in the future. As a result of a changing climate it is likely the Eel River will experience a reduction in its overall viable salmonid habitat or a shift to habitat in increasing elevations, as air and water temperatures increase and late summer and fall flows decrease along with annual snow pack (Hanak et al., 2011; Mastrandrea & Luers, 2012). Considerations about future environmental conditions suggest that we favor prioritizing the reintroduction of California Coastal Chinook (CC) salmon and Northern Coastal (NC) steelhead into the high altitude habitats found above Scott Dam. These areas are likely to continue to provide critical cold-water refugia for the upper Eel River’s threatened salmonids despite climate change predictions in the rest of the region. The many tributaries flowing out of the Snow Mountain Wilderness and the geomorphic conditions which keep them flowing and cool today, are less likely to change in the future due to anthropogenic alterations.

Furthermore, a 2011 NMFS status review of the NC steelhead population suggested the Upper Eel river population is likely at a high risk of extinction due to the loss of majority historical stream habitat (NMFS, 2011). Given the results of this year’s monitoring efforts, NC
Steelhead (*O. mykiss*), which spend a longer duration of their life in freshwater habitat (including migration, spawning, and rearing during the warm summer months), the cold-water habitat above Scott Dam is likely to most greatly benefit the winter-run population if they are to regain access in the future. Additionally, these benefits would likely extend to CC Chinook salmon as they seek out cold-water refugia while moving freely through the upstream available habitat.

It is critically important to the resiliency and long-term survival of salmonids in the Eel River that we look at the habitat suitability of the area above Scott Dam with respect to the other areas of the watershed. The loss of salmonid habitat upstream of Scott dam has resulted in a reduction of available habitat that can serve as refugia for salmon and steelhead, particularly in conditions that include periods of extended drought (Yoshiyama and Moyle, 2010). Rising temperatures will affect the overall distribution of the species and impact their persistence over time, and these effects will be exacerbated under predicted scenarios from the effects of climate change (Poff et al. 2002; Mote et al. 2003). Given the results of our 2015 temperature monitoring efforts, as future discussions develop around relicensing of Scott Dam and the Potter Valley Project, further analysis on habitat suitability and availability in the Upper Mainstem Eel River watershed is warranted.

Literature Cited

NMFS. (2011). 5-Year Status Review of Central California Coastal Steelhead and Northern California Steelhead. Status Review Update Report prepared by Thomas H. Williams, Brian C. Spence, Steven T. Lindley, and David A. Boughton. Southwest Fisheries Science Center, 110 Shaffer Road, Santa Cruz, CA 94929-12

